Q. 1 Why are pentahalides more covalent than trihalides? Ans:In pentahalides, the oxidation state is $\mathbf{+ 5}$ and in trihalides, the oxidation state is +3 . Since the metal ion with a high charge has more polarizing power, pentahalides are more covalent than trihalides.
Q. 2 Why is BiH_{3} the strongest reducing agent amongst all the hydrides of Group 15 elements?
Ans:As we move down a group, the atomic size increases and the stability of the hydrides of group 15 elements decreases. Since the stability of hydrides decreases on moving from $\mathbf{N H}_{3}$ to BiH_{3}, the reducing character of the hydrides increases on moving from $\mathbf{N H}_{3}$ to $\mathbf{B i H}_{3}$.
Q. 3 Why is N_{2} less reactive at room temperature?

Ans: The two \mathbf{N} atoms in N_{2} are bonded to each other by very strong triple covalent bonds. The bond dissociation energy of this bond is very high. As a result, \mathbf{N}_{2} is less reactive at room temperature.
Q. 4 Mention the conditions required to maximise the yield of ammonia.
Ans:Ammonia is prepared using the Haber's process. The yield of ammonia can be maximized under the following conditions:
(i) High pressure (200 atm)
(ii) A temperature of $\sim 700 \mathrm{~K}$
(iii) Use of a catalyst such as iron mixed with small amounts of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$.
Q. 5 How does ammonia react with a solution of Cu^{2+} ?

Ans: $\mathbf{N H}_{3}$ acts as a Lewis base. It donates its electron pair and forms a linkage with metal ion.

$$
\mathrm{Cu}^{2+}{ }_{(a q)}+4 \mathrm{NH}_{3(a q)} \leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]_{(a q)}^{2+}
$$

Blue
Deep blue
Q. 7 Bond angle in $\mathrm{PH}_{4}{ }^{+}$is higher than that in PH_{3}. Why?
Ans:In $\mathbf{P H}_{3}, \mathbf{P}$ is $s \boldsymbol{p}^{\mathbf{3}}$ hybridized. Three orbitals are involved in bonding with three hydrogen atoms and the fourth one contains a lone pair. As lone pair-bond pair repulsion is stronger than bond pair-bond pair repulsion, the tetrahedral shape associated with $s p^{3}$ bonding is changed to pyramidal. PH_{3} combines with a proton to form $\mathrm{PH}_{4}{ }^{+}$in which the lone pair is absent. Due to the absence of lone pair in $\mathrm{PH}_{4}{ }^{+}$, there is no lone pair-bond pair repulsion. Hence, the bond angle in $\mathrm{PH}_{4}{ }^{+}$is higher than the bond angle in $\mathbf{P H}_{3}$.

$\mathrm{PH}_{4}{ }^{+}$

PH_{3}
Q. 8 What happens when white phosphorus is heated with concentrated NaOH solution in an inert atmosphere of CO_{2} ?
Ans: White phosphorous dissolves in boiling $\mathbf{N a O H}$ solution (in a CO_{2} atmosphere) to give phosphine, PH_{3}. $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$

Phosphine Sodium hypophosphite

Q. 9 What happens when PCl_{5} is heated?

Ans:All the bonds that are present in $\mathbf{P C l}_{5}$ are not similar. It has three equatorial and two axial bonds. The equatorial bonds are stronger than the axial ones.
Q. 6 What is the covalence of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$? Ans:

From the structure of $\mathrm{N}_{2} \mathrm{O}_{5}$, it is evident that the covalence of nitrogen is 4.

Therefore, when PCl_{5} is heated strongly, it decomposes to form PCl_{3}.

Q. 10 Write a balanced equation for the hydrolytic reaction of PCl_{5} in heavy water.

$$
\mathrm{PCl}_{5}+4 \mathrm{D}_{2} \mathrm{O} \longrightarrow \mathrm{D}_{3} \mathrm{PO}_{4}+5 \mathrm{DCl}
$$

Ans:
Q. 11 What is the basicity of $\mathrm{H}_{3} \mathrm{PO}_{4}$?

Answer :
$\mathbf{H}_{3} \mathbf{P O}_{4}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$

Since there are three $\mathbf{O H}$ groups present in $\mathbf{H}_{3} \mathrm{PO}_{4}$, its basicity is three i.e., it is a tribasic acid.

